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ACOUSTICAL IMPEDANCE, AND THE THEORY OF HORNS AND
OF THE PHONOGRAPH

BY ARTHUR GORDON WEBSTER
DEPARTMENT OF PHYSICS, CLARK UNIVERSITY

Communicated, May 8, 1919*

The introduction more than thirty years ago of the term 'impedance' by
Mr. Oliver Heaviside has been productive of very great convenience in the
theory of alternating currents of electricity. Unfortunately, engineers have
not seemed to notice that the idea may be made as useful in mechanics and
acoustics as in electricity. In fact, in such apparatus as the telephone one
may combine the notions of electrical and mechanical impedance with great
advantage. Whenever we have permanent vibrations of a single given fre-
quency, which is here denoted, as usual, by n/27r, the notion of impedance is
valuable in replacing all the quantities involved in the reactions of the system
by a single complex number. If we follow the convenient practice of denoting
an oscillating quantity by ei" and taking its real part (as introduced by
Cauchy) all the derivatives of eft are obtained by multiplication by powers
of in, or graphically by advancing the representative vector by the proper
number of right angles.

If we have any oscillating system into which a volume of air X periodically
enters under an excess pressure p, I propose to define the impedance by the
complex ratio Z = p/X. If we call dX/dt = I the current as in electricity,
if we followed electrical analogy we should write Z = pI so that the definition
as given above makes our impedance lead by a right angle the usual definition.
I believe this to be more convenient for our purposes than the usual definition
and it need cause no confusion.

If we have a vibrating piston of area S as in the phonometer, we shall refer
its motion to the volume St it carries with it and the force acting on it to the
pressure, so that F = Sp. The differential equation of the motion is

d2t d
m ++ = F= Sp, X== (1)

we have
Z = (f- mn2 + iKn) / S2, (2)

where m is the mass, K the damping, f the stiffness. The real part of S2Z,
f - mn2, is the uncompensated stiffness, which is positive in a system tuned
too high, when the displacement lags behind the force, by an angle between
zero and one right angle, negative when the system is tuned too low, when the

* This article was read in December 1914 at the meeting of the American Physical Society
at Philadelphia, and has been held back because of the continual development of the experi-
mental apparatus described in a previous paper in these PROCEEDINGS.
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lag is between one and two right angles, as shown in figure 1. If we force air
ihto a chamber of volume V, the compression s = X/V will be related to the
excess pressure p by the relation p = es, where e is the modulus of elasticity
of the air.e = pa2, p being the density and a the velocity of sound. Conse-
quently we have

e pa2Zo = e = pa (3)

and the analogy is to a condenser. If we have air passing through an orifice
or short tube of conductivity c its inertia gives an apparent mass p/c, and if it
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escapes from a circular hole in an infinite plane it dissipates energy so that the
whole impedance credited to the hole is

pn2 pn
3 ( k 1 n ,Z2 = - + i = ek2 i- -wherek =. (4)

c 2?ra 'Vc a
These three typical impedances will be at constant use in acoustics. It is to
be remembered that systems in series have their impedances added and in
parallel have the reciprocals of impedance added. Also that the free vibra-
tions of a system are obtained by equating the impedances to zero.
As a simple example consider the phone described in the previous article,

figure 3.

276



PHYSICS: A. G. WEBSTER

Let X1 = St be the volume introduced by the piston X2 that entering by
the hole. Then

p = Zo(Xi+ X2) =-Z2X2, (5)

X2 =- Zo Xl
Zo +- Z2

and inserting values,

X2=- ki 1\ (6)
1 + Vk -J\27 ci

Disregarding phase by taking the modulus and putting k = n/a we have
the phone formula for the strength of source.

dXA= d =S |s|, (7)

where
n

t . KVk2 V4r2k6 (8)

If instead of sending the air out through a hole it goes into a cone or any
other horn, we must use for the impedance Z2 that given below, and we arrive
at the theory of the phonograph, and are thus able to answer the question as
to the function of the horn in persuading the sound to come out of the phono-
graph when the motion of the diaphragm is given (it is well known that very
little sound is emitted by the phonograph or the telephone with the horn taken
off, although in the former case the motion of the diaphragm is exactly the
same).
The phonometer was formerly arranged with the back of the diaphragm

protected from the sound, figure 3. Let P be the external pressure, then, as
before,

p = Zo(X1 + X2) (9)
and in addition,

-p = Z1X1, (10)
P-p= ZX2,

from which
- PZoX1 = (11)ZoZI + ZiZ2 + Z2Zo'

giving the formula for the measurement of the pressure,
P = Vo/S (12)
_

[
=

(a;+2 + +[w{-U (a# + 72)j} + {ilu + avl2I*
1}3)
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and tp may be termed the sensitiveness of the phonometer. Where

7 = S2Zo = S2pa2/V, a = Kn, B=S2pn3/2ta,
= f - n2m + s2pa2/v, v = S2{pa/V - pu2/c} =S2Zo (1 - kV/c) (14)
As described in my recent article the back of the piston is exposed to the

sound, figure 4. Then
P- =Z1X = ZX2 (15)

p =o (Xi + X2)
from which

X= Z2P (16)ZoZI + ZiZ2 + Z2Zo

b̂(v - ')2 +2 '1 (17)[ v-(a# + Y2) ++ (U + U)2(17)
Tubes and Horns.-Beside the above described phone and phonometer, the

theory of which assumed a resonator so small that the pressure is supposed to
be the same at every internal point, I have made use of many arrangements
employing tubes or cones, in which we must take account of wave-motion.
The familiar theory of cylindrical pipes may be included in the following gen-
eralized theory, which I have found experimentally to serve well.
Let us consider a tube of infinitesimal cross section a varying as a function

of the distance x from the end of the tube. Then if q is the displacement of
the air, p the pressure, s the compression, we have the fundamental equations

p =es = pa2s =-e divq d() (18)
a dx

d2P = a2Ap = a2 divgrad p = a2 d ( d} (19)dt2 rdx \ dx/

d2q _ 1dp = a2 d { d(qf)} (20)a -l^A(- a-(= (20)
d2 p dx dx a dx

For a simple periodic motion we put p, q proportional to ec", and obtain

dp d lg dp + kp = , d + g + d g +k2q = O. (21)dx dx dx d- dx dx dX2
Both these linear equations may be solved by means of series, and if we call
u(kx), v(kx) two independent solutions we have

p = Au + Bv, Pq = Au' + Bv', I =pa2k,
where the accents signify differentiation according to kx. If we denote values
at one end x = xl and at the other end x = x2 by suffixes 1, 2, respectively,
and form the determinants
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Ul, V1l U2, V2 f2, V2

D4 = |IU2, I Ds=, D6 = ul
Ul VI U2, V2 U2) V2
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(22)

which satisfy the relation,
D1D2 = DaD, + DDJ)

we may determine the constants A, B in terms of any two out of Pi, .q, P2, q2,
so that we obtain

2 = (plD4 + qiDs5)/Di,
pi = (pD3 -Pq2D)/D2,

(23)f1q2 = (-p1D6 + iqlDs)/Di,
Pql = (pgD6 + tq2D4)/D2.

As it is more convenient to deal with the volumes X1 = o¢lq, X2 = ^2q2 we shall
have in general

P2 = api + bX1, X2 = cpi + dX1, (24)
where

a=D4 b =
D =_ -2 D6 d = 2 D3ad-bc =2D2aD1 a1D1 P DI' -1 D1' - D

and for the impedances belonging to the ends of the tube

aZ1 + bZ2= dcZl + dl
dZ2 -b
- cZ2 + a

(25)

so that the impedance at either end of the tube is a linear fractional function
of the other. According to the apparatus attached to an end the impedance
attached to that end is known. A tube for which a, b, c, d are given may
be replaced by any other tube having the same constants. .

Examples.-Cylindrical tube, a constant. Put x2 - x = Z1,
+ k2p = 0,

dx2
u = cos kx, r = sin kx, u' =- sin kx, v' = cos kx,
D1 = D2 = 1, D3 = D4 = cos kl, D5 = D6 = sin kl,

a = d = cos kl, b = e sin kl,
O'

Z1 cos kl + sin kl
Z =-

-Z1 sin kl + cos kl,
a

c = - - sin kd,
ft

(26)
(27)

Z2 cos kl - , sin kl,
Z1 0

Z2 sin kl + q cos kl
a

(28)
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d2p 2 dp +k2=
dx2 xdx

cos kx s kx
U = , V=

kx kx,

D1 - k1k22x2 2

u' (sin kx cos kx\ cos kx sin kx

k kx k+x ' kx k2X2
1

D2 ,k2x,22
cos klD2-== 2-'
k2XX2

cos kl sin kl
D4 =--2 +k3xx22k2 XX2 k XX22'

and if we introduce two lengths e1, 62, defined by the equations
tan kel = kx1,

we easily get
_ xl sin k (I + e1)a- - .. X

X2 sim ke

C 2 xl sin k ( + e1 - 62)
f8 x2 sin kel sin ke2

7. =--

z, sin k ( + el)+ sin ,

sin ke1 01

2 Z sin k (l+ e - e2) + sin k (I - 2)
sin kel sin ke2 v sin ke2

Z2 sin k (I- e) + sin kl

Zl- sin ke2 a2 (32)
o1 sin k(l + c --2) sin k (l+e)Z2 +

sin kec sin kE2 oa2 sin ke2
The formulae (31), (32) were used by Professor G. W. Stewart in designing

horns to be used during the war.

It is not true, as is frequently stated in books on musical instruments, that
the brass instruments of the orchestra are hyperbolic in profile, but I have
found for all practical purposes the bell of every instrument may be repre-
sented by one of the three formulae

o.= o.o, o.
=ooe

-m

o.

=oaoe
Even if an equation cannot be given to the profile the differential equation
may be easily integrated graphically, or the length may be divided up into
sections and different values of n used for different sections, as is customary
in the theory of ballistics.

(29)

sin klDs-kix=1k2x Xx2

tan ke2 = kx2,

b = sin kl,
o'1 X2

d 2 xi sin k ( - E2)
ol X2 sin ke2

(30)

(31)

,rI2



PHYSICS: A. G. WEBSTER

Case 1. cr = off". (Change units so that k = 1)
dp + n dp + = o,
dx2 x dx

We have
--

,

p = J ,-I (x)/x I-
Examples.

n = 0,

Jl(x) = sin x/V,
2

d2X n dXdx x +x=o
dx2 x dx

n+l
X = J n+i_ ()x2

2

n = 2,
3

J3(X) = sin X/X2 -cos /X
2

3

J (x) = cos x//, J3 (x) = - sin x//-X - cos x/x2
2 2

These include the straight cylinder, the straight cone, and the purely hyper-
bolic horn. In the latter case we have figure 5, where xl, is the bell. If the
horn is closed at x2 we have

Z2 = oD

Z ck2 l k }1 _d (sin kl + kxlcos kl) xl

Zc 2{r c aok sin kll
and if we put k= kl

(36)at I Ictn t= ----Ic Xi1

which may be easily discussed graphically.
On the other hand if the horn is open at x2 we have

tan /t = I- e )1 {X2 1tX2 })a / (1 CP P1 C12_
These formulae were confirmed experimentally by my then assistant Dr. H.
K. Stimson in 1915 on a coach-horn, a trombone, and a phonograph horn, with
the following results:

CACULATED OBSERVED

For the coach-hornf Closed ............................... 177 181
Fo e pen................................. 254 202

For the trombone Closed ............................... 286 305Forthetrombone Open .. ....................... .... 418 432

For the phonograph Closed ............................... 311 304
For the bophongrIpOpen ............................... 329 415

(34)

(35)

n=-2
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These results give a fair agreement considering that we have used for the
conductivity of the mouth the simple formula c = 0.6 R which is true only for
cross-sections infinitesimal compared with the wave-length, whereas in the
case of the wooden phonograph horn, the actual radius is nearly one-fourth of
.the wave-length.
A paper on the subject of the impedance of such an end will shortly appear.
In the case of an exponential section we have

a = ooe- mx

d2P dp d2X dX
+ m d x=-0, - --+ X = 0,dx2 dx dx2 dx

p = e-v4-k' [A cos kx + B sin kx},
X = e-V4x {C cos kx + D sin kx}.

and it is noticeable that the pressure vanishes at the same cross-section as for
a straight tube.

Finally, in the case

we = sooe
2

we may solve the equation by means of the confluent hyper-geometric func-
tion.

It is to be noticed that in none of these cases, except the straight tube, are
the different overtones harmonic. Thus, the characteristic tone of the "brass"
is not due to the substance, but is entirely a matter of geometry as is shown
by the heavy casting in plaster of Paris of a trombone bell used by the writer,
the tone of which cannot be distinguished from that of the brass bell. I
believe this phenomenon is well known.
Inasmuch as all musical instruments are composed either of resonators

combined with strings, bars, plates, and horns, I feel that the above theory,
while merely an approximation as to accuracy, will go far toward enabling us
to complete the theory of musical instruments. Of course, the actual tones
emitted by a brass instrument will depend upon the dynamics of the lips
which is reserved for a future paper.
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